The possibilities of ultrasound diagnostics in assessing the structural variants of the bifurcation of the common carotid artery

Cover Page


Cite item

Abstract

Aim – to identify various structural variants of the bifurcation of the common carotid artery using the ultrasound imaging method, taking into account the age characteristics of patients.

Material and methods. We examined 1,061 patients (the average age was 57.0±10.7 years). Using ultrasound imaging, the anatomical variant of the bifurcation of the common carotid artery was determined, taking into account the location of the external and internal carotid arteries at the visualization level. The results were grouped according to the age and gender of the patients, statistically processed.

Results. 2,122 vascular complexes were studied (1,396 in women and 726 in men). Five main types of bifurcation structure of the common carotid artery (types A – E) were identified. Type A was the most common among all participants (up to 42%). Type B was detected in up to 35% of men and 27% of women. Type C accounted for 15-19% of cases. Other options were estimated at 4-7%. Taking into account the age, four groups were formed for men and women. At the same time, type A was 41-43% for women, regardless of age, and 31-40% for men. Type B in men in the age group 1 was detected in 48%. Type С was 2-4% more common among women in the age groups 2 and 3. In the older age group of men, type C was 31% and type E was 12% (the most common). In other age groups, D and E types accounted for 4-7%.

Conclusion. The results obtained contribute to the development of personalized directions in the treatment of vascular diseases and help to improve minimally invasive surgical interventions.

Full Text

INTRODUCTION

Variable anatomy of the vascular bed demonstrates the importance of systematization of knowledge for subsequent successful implementation of results into clinical practice [1, 2]. The active development of methods of intra-vital diagnostics and modern data processing technologies make it possible to find many new features in the structure of the vascular system [3–5]. The development of minimally invasive surgical interventions and the expansion of personalized approaches in medicine require a more in-depth and detailed assessment of the main vessels [6–8]. The neck area contains the most important main arteries, which are often the site of development of dangerous hemodynamic disorders [9, 10]. Ultrasound diagnostics at the current stage of its development allows not only to evaluate the structure of the vascular wall and hemodynamic parameters, but also to obtain extensive information about the anatomy in the field of visualization [11], and the risk of developing cardiovascular diseases [12–14].

AIM

Using the ultrasound imaging method, taking into account the age characteristics of patients, to identify various structural variants of the bifurcation of the common carotid artery.

MATERIAL AND METHODS

The study was conducted using the SonoAce R7 and Logiq F6 ultrasound diagnostic systems in an outpatient setting. Linear multifrequency sensors were used for visualization. A total of 1061 people (698 women and 363 men) were examined. The age of the study participants ranged from 18 to 88 years, with an average of 57.0±10.7 years.

We determined the anatomical variant of the structure of the bifurcation of the common carotid artery, taking into account the location of the external and internal carotid arteries at the level of visualization. The data were summarized in Microsoft Excel 2007 tables. Statistical data processing was performed in StatSoft Statistica 10 and IBM SPSS Statistics 20 software suites.

RESULTS

By combining data from both sides of the entire visualization, 2122 carotid bifurcations were analyzed. Among women, 1396 vascular structures were assessed, and 726 among men. A visual representation of the normal age distribution among men and women in the work is presented in Figure 1.

 

Figure 1. Graphs of the normal probability distribution of participants by age, taking into account the gender in the observation (the Shapiro – Wilk W test for women w=0.9674, p=0.0000; for men w=0.9893, p=0.00004).

Рисунок 1. Графики нормального вероятностного распределения участников по возрасту с учетом пола в наблюдении (критерий Шапиро – Уилка для женщин w=0,9674, p=0,0000; для мужчин w=0,9893, p=0,00004).

 

In our study, we used the original system of determining the structure of the region of carotid bifurcation [3] that comprises 5 types (Fig. 2): А – median position of the external carotid artery; B – ventral position of the internal carotid; C – lateral position of the external carotid artery; D – divergence or intersection of vessels in the bifurcation region; E – medial inclination of carotid arteries.

 

Figure 2. Structural variants of the bifurcation region of the common carotid artery in the observation.

Рисунок 2. Варианты строения области бифуркации общей сонной артерии в наблюдении.

 

The general data on normal distribution of participants according to age between men and women is shown in Fig. 3 and Table 1.

 

Figure 3. Graphs of the normal probability distribution of participants by age, taking into account the type of structure of the bifurcation of the common carotid artery (Shapiro – Wilk W test: type A w=0.9787, p=0.0000; type B w=0.9729, p=0.0000; type C w=0.9701, p=0.0000; type D w=0.9622, p=0.0044; type E w=0.9913, p=0.4966).

Рисунок 3. Графики нормального вероятностного распределения участников по возрасту с учетом типа строения бифуркации общей сонной артерии (критерий Шапиро – Уилка: тип А w=0,9787, p=0,0000; тип Б w=0,9729, p=0,0000; тип В w=0,9701, p=0,0000; тип Г w=0,9622, p=0,0044; тип Д w=0,9913, p=0,4966).

 

Table 1. Normality tests for age with respect to the type of structure of the bifurcation of the common carotid artery

Таблица 1. Критерии нормальности для возраста с учетом типа строения бифуркации общей сонной артерии

Type of bifurcation structure

Kolmogorov-Smirnov test with Lilliefors significance correction

Statistics

Degree of freedom

Significance

1.00

0.080

867

0.000

2.00

0.090

626

0.000

3.00

0.090

375

0.000

4.00

0.081

105

0.089

5.00

0.054

149

0.200

 

General data on the occurrence of structural variants of bifurcation of the common carotid artery among participants in absolute and relative values are shown in Table 2.

 

Type of bifurcation structure

Total number of cases

% among participants

Women

Men

Total

Women

Men

Total

A

586

281

867

42

39

40

B

375

251

626

27

35

30

C

266

109

375

19

15

18

D

73

32

105

5

4

5

E

96

53

149

7

7

7

Table 2. Information on the prevalence of various vascular structural variants among all participants in the observation

Таблица 2. Сведения о распространенности различных вариантов строения сосудов среди всех участников наблюдения

 

The most frequent structural variants of bifurcation are types A and B. Type A comprises up to 40% of all observed cases, reaching 42% in women and 38% in men. Type B comprises up to one third of cases: 35% among men and 27% among women. Type C is found in one fifth of cases: 19% among women and 15% among men. Other variants of the relative position of vessels (D and E), depending on the sex of patients, were found in 4-7%.

In 420 participants of the study (164 men and 256 women) similar structural variants of bifurcation of the common carotid arteries on either side were identified, which comprises 39.6% of the total data in the observation; the general data follows in Table 3.

 

Table 3. Distribution of the same structural variants of the common carotid artery bifurcation on both sides among the participants in the observation

Таблица 3. Распределение одинаковых вариантов строения бифуркации общей сонной артерии с обеих сторон среди участников наблюдения

Parameter

Type of relative position of vessels

A

B

C

D

E

Number, people

207

126

63

12

12

Proportion in the group, %

49

30

15

3

3

 

We then analyzed the results obtained taking into account the gender and age of the patients. The following groups of study participants were formed as per age periods: Group 1, youth and I adult period (men and women aged below 35); Group 2, II adult period (men over 35 and below 60, and women below 55 years of age); Group 3, elderly people (men over 60 years of age and women over 55 and below 74 years of age); Group 4, old people (above 75 years of age).

The distribution of structural variants of main vessels in the region of the common carotid artery bifurcation among participants from various age groups regardless of their sex is shown in Fig. 4 and Tables 4 and 5.

 

Figure 4. Diagram of the distribution of participants, taking into account the type of structure of the common carotid artery bifurcation and age group (Shapiro – Wilk W test: group 1, w=0.7703, p=0.0000; group 2, w=0.794, p=0.0000; group 3, w=0.8183, p=0.0000; group 4, w=0.8368, p=0.0000).

Рисунок 4. Диаграмма распределения участников с учетом типа строения бифуркации общей сонной артерии и возрастной группы (критерий Шапиро – Уилка: первая группа w=0,7703, p=0,0000; вторая группа w=0,794, p=0,0000; третья группа w=0,8183, p=0,0000; четвертая группа w=0,8368, p=0,0000).

 

Table 4. Normality test for the type of structure of the bifurcation of the common carotid artery with respect to the age group

Таблица 4. Критерии нормальности для типа строения бифуркации общей сонной артерии с учетом возрастной группы

Type of bifurcation structure

Kolmogorov-Smirnov test with Lilliefors significance correction

Shapiro-Wilk W test

Statistics

Degree of freedom

Significance

Statistics

Degree of freedom

Significance

A

0.280

867

0.000

0.844

867

0.000

B

0.263

626

0.000

0.846

626

0.000

C

0.303

375

0.000

0.834

375

0.000

D

0.291

105

0.000

0.837

105

0.000

E

0.264

149

0.000

0.826

149

0.000

 

Table 5. Normality test for the age group with respect to the type of structure of the bifurcation of the common carotid artery

Таблица 5. Критерии нормальности для возрастной группы с учетом типа строения бифуркации общей сонной артерии

Age group

Kolmogorov-Smirnov test with Lilliefors significance correction

Shapiro-Wilk W test

Statistics

Degree of freedom

Statistics

Degree of freedom

Statistics

Degree of freedom

1

0.273

178

0.000

0.770

178

0.000

2

0.253

770

0.000

0.794

770

0.000

3

0.232

1010

0.000

0.818

1010

0.000

4

0.234

164

0.000

0.837

164

0.000

 

The data on the number of identified types of relative position of vessels in the region of the common carotid artery bifurcation among women and men are shown in Table 6.

 

Table 6. Distribution of structural variants of the bifurcation of the common carotid artery, taking into account gender and age group

Таблица 6. Распределение вариантов строения бифуркации общей сонной артерии с учетом пола и возрастной группы

Type of relative position of vessels

Women

Men

G 1

n=100

G 2

n=372

G 3

n=802

G 4

n=122

G 5

n=78

G 6

n=398

G 7

n=208

G 8

n=42

A

44

(44%)

159

(43%)

279

(41%)

51

(43%)

28

(36%)

157

(39%)

83

(40%)

13

(31%)

B

39

(39%)

106

(28%)

172

(26%)

22

(18%)

37

(48%)

140

(35%)

64

(31%)

10

(24%)

C

12

(12%)

60

(16%)

137

(20%)

31

(25%)

7

(9%)

50

(13%)

39

(18%)

13

(31%)

D

-

19

(5%)

32

(6%)

10

(8%)

5

(6%)

16

(4%)

10

(5%)

1

(2%)

E

5

(5%)

28

(8%)

42

(7%)

7

(6%)

1

(1%)

35

(9%)

12

(6%)

5

(12%)

 

Most frequently, Type A was found among women, comprising 41-43% of the cases in all age groups. Among men, this type of relative position of vessels was found least frequently, in 31% of the cases, in Group 4.

In the male group, Type B was identified more frequently than in the female group. The largest number of cases was found in Group 1 of men (48%), and the least number in Group 4 (24%). Among women, this variant of relative position of vessels in the region of the common carotid artery bifurcation was 39% of the cases in Group 1, whereas the least number of cases, 18%, was found in age Group 4.

Type C in Groups 1, 2 and 3 was mound 2-4% more frequently in women. In Group 4 among men, Type C was found most frequently comprising 31%.

The remaining types of relative position of vessels (D and E) made up to 4–7% of the cases across the age groups. The greatest value for Type E was found in the among men reaching 12% in Group 4. Type D was not found in women in age Group 1.

DISCUSSION

The study of the variable anatomy of the main arteries of the neck is performed by different teams of specialists. Morphological studies based on pathological examinations are of special interest. P.A. Samptesov et al. (2012) report the data of morphological examination of the main arteries considering individual specifics of the shape of the neck based on examination of bodies of 97 men [15]. F. Hojaij et al. (2019) uses the data of 50 pathological examination to study anatomic peculiarities in the relative position of the carotid arteries, jugular vein and the vagal nerve [16]. The undisputed advantage of pathological examination is its unbiased nature, the possibility of detailed documentation of the study process, and the possibility of append the results of studies with histological specimens. Unfortunately, autopsy data do not always allow for a full assessment of the functional relationships that are most relevant in clinical practice.

Great attention is paid to descriptions of dimensional characteristics of the main arteries of the neck [1]. Many clinical studies dwell, in much detail, on questions of diagnosing [2] or specifics of surgical treatment [4, 6]. The variable anatomy of the main arteries is of particular importance when planning high-tech and minimally invasive surgical interventions [17–19].

The classification of relative position of vessels, presented by us, was originally developed to assess the variability of the main arteries when studying images obtained by magnetic resonance tomography [3], however, in the process of practical work it proved well in performing ultrasonic visualization.

In vascular surgery, the area of intravascular interventions is rapidly developing [9], allowing for the individual characteristics of the anatomy of the main arteries to be taken into account directly at the operating table. Methods of minimally invasive surgery require refined knowledge of individual variability of the bloodstream. The region of the bifurcation of the common carotid artery includes one of the most important reflexogenic zones of vegetative innervation, and is the location of the most frequent diagnostic of significant atherosclerotic changes at the level of the vessel wall. Contemporary methods of processing of diagnostic information using computers enable the use of methods of computer analysis, create realistic three-dimensional models facilitating surgery planning [20, 21].

The data on age and sex factors associated with varying anatomy of the main arteries in the region of bifurcation presented in this paper, combined with ultrasonic visualization, enable improvement of personalized approach in medicine [11].

Our study demonstrates the possibility of practical implementation if a simple, straightforward and effective method to determine anatomic variants of the structure of the common carotid artery bifurcation. The relatively large scope of research allowed for a precise identification of the rare types (D and E) and formation of participant groups with respect to their age.

CONCLUSION

Our study presents the possibilities of ultrasonic visualization of the anatomical variations in the structure of the common carotid artery bifurcation. The considerable size of our sampling allowed showing the correlations of prevalence of the different anatomic variants among men and women, and taking into account the factor of the patients’ age.

In general, typical variants of relative position of the vessels (types A and B) are most frequent with Type A being prevalent among women. Type B variant of the vessel relative position is seen more often in young men. Type C, in its turn, is more often identified in both men and women, as the age progresses. Rare types of vessel position (D and E) are identified in 4-7% of the cases; and only in men of II adult period type E comprised 12% cases.

The presented data are relevant for assessing the variable anatomy of the main arteries of the neck, allowing development of personalized directions in the treatment of vascular diseases and improvement of minimally invasive surgical interventions.

 

ADDITIONAL INFORMATION

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Study funding. The work was carried out at Orеl State University named after I.S. Turgenev within the framework of the state assignment No. 075-00196-24-08 for 2024 and for the planning period of 2025 and 2026 dated August 23, 2024, project No. FSGN-2024-0014 (1024041900023-6-1.2.1; 2.6.2; 3.1.3; 3.2.12; 3.2.4).

Источник финансирования. Работа выполнена в ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева» в рамках государственного задания № 075-00196-24-08 на 2024 год и на плановый период 2025 и 2026 годов от 23.08.2024 г., проект № FSGN-2024-0014 (1024041900023-6-1.2.1;2.6.2;3.1.3;3.2.12;3.2.4).

Conflict of interest. The authors declare that there are no obvious or potential conflicts of interest associated with the content of this article.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.

Compliance with Ethical Standards

The authors confirm that the rights of the people who participated in the study were respected, including obtaining informed consent where necessary. The study protocol was approved by the local Ethics Committee of the Orеl State University named after I.S. Turgenev (protocol No. 25 dated November 16, 2022).

Соответствие нормам этики

Авторы подтверждают, что соблюдены права людей, принимавших участие в исследовании, включая получение информированного согласия в тех случаях, когда оно необходимо. Протокол исследования был одобрен локальным этическим комитетом ФГБОУ ВО «Орловский государственный университет имени И.С. Тургенева» Министерства науки и высшего образования РФ (протокол № 25 от 16 ноября 2022 г.).

Contribution of individual authors. A.S. Moshkin – organization of the theoretical and clinical part of the research, conducting the research, editing of the manuscript. V.N. Nikolenko – design of the research; interpretation of the research results. M.A. Khalilov – statistical data processing; editing of the manuscript. L.V. Gavryushova – coordination of the clinical part of the research, interpretation of the research results. L.V. Moshkina – statistical processing, editing the manuscript. Zhi Li – statistical data processing; interpretation of research results.

All authors gave their final approval of the manuscript for submission, and agreed to be accountable for all aspects of the work, implying proper study and resolution of issues related to the accuracy or integrity of any part of the work.

Участие авторов. А.С. Мошкин – организация теоретической и клинической части исследований, проведение исследования, редактирование рукописи. В.Н. Николенко – оформление дизайна исследования; интерпретация результатов исследования. М.А. Халилов – статистическая обработка данных; редактирование рукописи. Л.В. Гаврюшова – координация клинической части исследования, интерпретация результатов исследования. Л.В. Мошкина – статистическая обработка, редактирование рукописи. Чжи Ли – статистическая обработка данных; интерпретация результатов исследования.

Все авторы одобрили финальную версию статьи перед публикацией, выразили согласие нести ответственность за все аспекты работы, подразумевающую надлежащее изучение и решение вопросов, связанных с точностью или добросовестностью любой части работы.

×

About the authors

Andrei S. Moshkin

Orel State University named after I.S. Turgenev

Author for correspondence.
Email: as.moshkin@internet.ru
ORCID iD: 0000-0003-2085-0718

MD, Cand. Sci. (Medicine), Associate Professor of the Department of Anatomy, Operative Surgery and Disaster Medicine

Russian Federation, Orel

Vladimir N. Nikolenko

Sechenov First Moscow State Medical University; Lomonosov Moscow State University

Email: vn.nikolenko@yandex.ru
ORCID iD: 0000-0001-9532-9957

MD, Dr. Sci. (Medicine), Professor, Head of the Department of Human Anatomy and Histology, Head of the Department of the Normal and Topographic Anatomy

Russian Federation, Moscow; Moscow

Maksud A. Khalilov

Orel State University named after I.S. Turgenev

Email: halilov.66@mail.ru
ORCID iD: 0000-0003-3529-0557

MD, Dr. Sci. (Medicine), Professor, Head of the Department of Anatomy, Operative Surgery and Disaster Medicine

Russian Federation, Orel

Liliya V. Gavryushova

Saratov State Medical University named after V.I. Razumovsky

Email: gavryushova.liliya@yandex.ru
ORCID iD: 0000-0003-4810-0695

MD, Cand. Sci. (Medicine), Associate Professor of the Department of Therapeutic Dentistry

Russian Federation, Saratov

Lyubov V. Moshkina

Orel State University named after I.S. Turgenev

Email: moshkina.l@internet.ru
ORCID iD: 0009-0008-1328-1880

MD, assistant at the Department of Anatomy, Operative Surgery and Disaster Medicine

Russian Federation, Orel

Zhi Li

Sechenov First Moscow State Medical University; Petrovsky National Research Centre of Surgery

Email: li-zhi@mail.ru
ORCID iD: 0000-0003-2062-8463

MD, Postgraduate of Vascular Surgery Department

Russian Federation, Moscow; Moscow

References

  1. Dovgyallo YuV. Age variability of the lumen of the internal carotid arteries. Morphological Almanac named after V.G. Koveshnikov. 2021;19(3):30-34. (In Russ.). [Довгялло Ю.В. Возрастная изменчивость величины просвета внутренних сонных артерий. Морфологический альманах имени В.Г. Ковешникова. 2021;19(3):30-34]. EDN: GAORNK
  2. Dol AV, Ivanov DV, Bakhmetyev AS, et al. Influence of the internal carotid arteries stenosis on the hemodynamics of the circle of willis communicating arteries: a numerical study. Russian Journal of Biomechanics. 2021;25(4):356-368. [Доль А.В., Иванов Д.В., Бахметьев А.С., и др. Численное исследование влияния стеноза внутренних сонных артерий на гемодинамику артерий виллизиевого круга. Российский журнал биомеханики. 2021;25(4):356-368]. doi: 10.15593/RZhBiomeh/2021.4.01
  3. Moshkin AS, Khalilov MA, Shmeleva SV, et al. The organization or personified treatment of diseases of coronary arteries considering analysis of bifurcation modifications. The problems of social hygiene, public health and history of medicine. 2021;29(4):951-956. [Мошкин А.С., Халилов М.А., Шмелева С.В., и др. Организация персонифицированного лечения заболеваний сонных артерий с учетом анализа вариантов бифуркации. Проблемы социальной гигиены, здравоохранения и истории медицины. 2021;29(4):951-956]. doi: 10.32687/0869-866X-2021-29-4-951-956
  4. Batrashov VA, Yudaev SS, Zemlyanov AV, Marynich AA. Evaluation of surgical intervention and conservative treatment in asymptomatic patients with pathological tortuosity of internal carotid arteries. Bulletin of the National Medical and Surgical Center named after N.I. Pirogov. 2022;17(3):38-41. [Батрашов В.А., Юдаев С.С., Землянов А.В., Марынич А.А. Результаты хирургического и консервативного лечения пациентов с асимптомной патологической извитостью внутренних сонных артерий. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2022;17(3):38-41]. doi: 10.25881/20728255_2022_17_3_38
  5. Gataulin YaA, Zaitsev DK, Smirnov EM, Yukhnev AD. The structure of unsteady flow in a spatially convoluted model of a common carotid artery with stenosis: a numerical study. Russian Journal of Biomechanics. 2019;23(1):69-78. [Гатаулин Я.А., Зайцев Д.К., Смирнов Е.М., Юхнев А.Д. Структура нестационарного течения в пространственно-извитой модели общей сонной артерии со стенозом: численное исследование. Российский журнал биомеханики. 2019;23(1):69-78].doi: 10.15593/RZhBiomeh/2019.1.07
  6. Vishnyakova MV, Pronin IN, Larkov RN, Zagarov SS. Computed tomography angiography in the planning of reconstructive operations on internal carotid arteries. Diagnostic and interventional radiology. 2016;10(3):11-19. [Вишнякова М.В., Пронин И.Н., Ларьков Р.Н., Загаров С.С. Компьютерно-томографическая ангиография в планировании реконструктивных операций на внутренних сонных артериях. Диагностическая и интервенционная радиология. 2016;10(3):11-19]. doi: 10.25512/DIR.2016.10.3.01
  7. Gavrilenko AV, Al-Yusef NN, Kuklin AV, et al. Minimally invasive carotid artery surgery. Pirogov Russian Journal of Surgery. 2021;6-2:59-64. [Гавриленко А.В., Аль-Юсеф Н.Н., Куклин А.В., и др. Малоинвазивная хирургия сонных артерий. Хирургия. Журнал им. Н.И. Пирогова. 2021;6-2: 59-64]. doi: 10.17116/hirurgia202106259
  8. Reyes-Soto G, Pérez-Cruz JC, Delgado-Reyes L, et al. The Vertebrobasilar Trunk and Its Anatomical Variants: A Microsurgical Anatomical Study. Diagnostics. 2024;14(5):534. doi: 10.3390/diagnostics14050534
  9. Antonov GI, Chmutin GE, Miklashevich ER, et al. Carotid artery dissection and blowout as a brachiocephalic arteries stenting complications. Hospital medicine: Science and practice. 2021;4(1):5-9. [Антонов Г.И., Чмутин Г.Е., Миклашевич Э.Р., и др. Диссекция и разрыв сонной артерии как осложнения стентирования брахиоцефальных артерий. Госпитальная медицина: наука и практика. 2021;4(1):5-9]. doi: 10.34852/GM3CVKG.2021.91.75.001
  10. Bos D, Arshi B, van den Bouwhuijsen QJA, Ikram MK, et al. Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events. J Am Coll Cardiol. 2021;77(11):1426-1435. doi: 10.1016/j.jacc.2021.01.038
  11. Krainik VM, Novikov DI, Zaitsev AYu, et al. Experience of clinical use of ultrasound guidance for cervical plexus block in reconstructive carotid surgery. Messenger of Anesthesiology and Resuscitation. 2019;16(1):35-41. [Крайник В.М., Новиков Д.И., Зайцев А.Ю., и др. Опыт клинического применения ультразвуковой навигации для выполнения блокады шейного сплетения в реконструктивной хирургии сонных артерий. Вестник анестезиологии и реаниматологии. 2019;16(1):35-41]. doi: 10.21292/2078-5658-2019-16-1-35-41
  12. Garg PK, Bhatia HS, Allen TS, et al. Assessment of Subclinical Atherosclerosis in Asymptomatic People In Vivo: Measurements Suitable for Biomarker and Mendelian Randomization Studies. Arterioscler Thromb Vasc Biol. 2024;44(1):24-47. doi: 10.1161/ATVBAHA.123.320138
  13. Ihle-Hansen H, Vigen T, Berge T, et al. Carotid Plaque Score for Stroke and Cardiovascular Risk Prediction in a Middle-Aged Cohort From the General Population. J Am Heart Assoc. 2023;12(17):e030739.doi: 10.1161/JAHA.123.030739
  14. Momcilovic D, Begrich C, Stumpf MJ, et al. Preclinical atherosclerotic burden in carotid and lower extremity arteries in adults with congenital heart disease. Vasa. 2023;52(4):257-263. doi: 10.1024/0301-1526/a001073
  15. Samotesov PA, Levenets AA, Kan IV, et al. Variant anatomy of common carotid artery bifurcation in males. Siberian Medical Journal. 2012;112(5):31-33. [Самотесов П.А., Левенец А.А., Кан И.В., и др. Вариантная анатомия бифуркации общих сонных артерий у мужчин. Сибирский медицинский журнал. 2012;112(5):31-33]. EDN: PBUYKJ
  16. Hojaij F, Rebelo G, Akamatsu F, et al. Syntopy of vagus nerve in the carotid sheath: A dissectional study of 50 cadavers. Laryngoscope Investig Otolaryngol. 2019;4(3):319-322. doi: 10.1002/lio2.275
  17. Han Q, Zhou P, Huang Y. Surgical Revascularization: Ligation of Extracranial Internal Carotid Artery and Superficial Temporal Artery-to-Middle Cerebral Artery Bypass in Patient with Extracranial Internal Carotid Aneurysm and Hemorrhagic Moyamoya Disease. World Neurosurg. 2019;126:129-133. doi: 10.1016/j.wneu.2019.02.110
  18. Sharma KJ, Heald C, Simmons JM, Cuff RF. Management of an extracranial internal carotid artery aneurysm secondary to relapsing polychondritis. J Vasc Surg Cases Innov Tech. 2020;6(4):576-579. doi: 10.1016/j.jvscit.2020.07.004
  19. Guerra A, Jain AK, Eskandari MK, Rodriguez HE. Ipsilateral carotid bypass outcomes in hostile neck anatomy. J Vasc Surg. 2021;74(6):1929-1936. doi: 10.1016/j.jvs.2021.05.036
  20. Nageler G, Gergel I, Fangerau M, et al. Deep Learning-based Assessment of Internal Carotid Artery Anatomy to Predict Difficult Intracranial Access in Endovascular Recanalization of Acute Ischemic Stroke. Clin Neuroradiol. 2023;33(3):783-792. doi: 10.1007/s00062-023-01276-0
  21. Memon S, Friend E, Samuel SP, Goykhman I, Kalra S, Janzer S, George JC. 3D Printing of Carotid Artery and Aortic Arch Anatomy: Implications for Preprocedural Planning and Carotid Stenting. J Invasive Cardiol. 2021;33(9):E723-E729. doi: 10.25270/jic/20.00696

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Graphs of the normal probability distribution of participants by age, taking into account the gender in the observation (the Shapiro – Wilk W test for women w=0.9674, p=0.0000; for men w=0.9893, p=0.00004).

Download (1MB)
3. Figure 2. Structural variants of the bifurcation region of the common carotid artery in the observation.

Download (1MB)
4. Figure 3. Graphs of the normal probability distribution of participants by age, taking into account the type of structure of the bifurcation of the common carotid artery (Shapiro – Wilk W test: type A w=0.9787, p=0.0000; type B w=0.9729, p=0.0000; type C w=0.9701, p=0.0000; type D w=0.9622, p=0.0044; type E w=0.9913, p=0.4966).

Download (1MB)
5. Figure 4. Diagram of the distribution of participants, taking into account the type of structure of the common carotid artery bifurcation and age group (Shapiro – Wilk W test: group 1, w=0.7703, p=0.0000; group 2, w=0.794, p=0.0000; group 3, w=0.8183, p=0.0000; group 4, w=0.8368, p=0.0000).

Download (1MB)

Copyright (c) 2025 Moshkin A.S., Nikolenko V.N., Khalilov M.A., Gavryushova L.V., Moshkina L.V., Li Z.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-65957 от 06 июня 2016 г.