Magnetic Properties of a Nickel–Zinc Ferrite Powder with Different Degrees of Dispersion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the degree of dispersion of a nickel–zinc ferrite powder of a Ni0.7Zn0.3Fe2O4 composition on its magnetic properties has been considered. The material has been synthesized using the ceramic technology with preliminary mechanical activation of precursors. The degree of dispersion has been varied using different modes of its dry grinding in a ball mill. The patterns of the changes in saturation magnetization and the coercive force as a function of grinding modes and a specific surface area of the ferrite powder have been established. The changes in the pattern of the magnetic phase transition in the region of the Curie temperature of materials with different degrees of dispersion have been determined.

Full Text

Restricted Access

About the authors

S. A. Bobuyok

National Research Tomsk Polytechnic University

Author for correspondence.
Email: sab45@tpu.ru
Russian Federation, Tomsk

A. P. Surzhikov

National Research Tomsk Polytechnic University

Email: sab45@tpu.ru
Russian Federation, Tomsk

E. N. Lysenko

National Research Tomsk Polytechnic University

Email: sab45@tpu.ru
Russian Federation, Tomsk

E. V. Nikolaev

National Research Tomsk Polytechnic University

Email: sab45@tpu.ru
Russian Federation, Tomsk

V. D. Salnikov

Immanuel Kant Baltic Federal University

Email: sab45@tpu.ru
Russian Federation, Kaliningrad

References

  1. Preeti H., Shilpa T., Deepika Ch., Blaise R., Atul T. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles // J. Magn. Magn. Mater. 2023. V. 530. P. 167925.
  2. Rohit J., Pooja P., Ankit V., Virender P.S. Magnetic and electrical traits of sol-gel synthesized Ni–Cu–Zn nanosized spinel ferrites for multi-layer chip inductors application // J. Solid State Chem. 2020. V. 289. P. 121462.
  3. Madake S.B., Thorat J.B., Rajpure K.Y. Spray deposited multimetal Cu–Ni–Zn ferrite for gas sensing application // Sens. Actuator A Phys. 2021. V. 331. P. 112919.
  4. Maciej K., Jacek S. Characterization of magnetoelastic properties of Ni–Zn ferrite in wide range of magnetizing fields for stress sensing applications // Measurement. 2021. V. 168. P. 108301.
  5. Lovely G., Viji C., Maheen M., Mohammed E.M. Enhanced magnetic properties at low temperature of Mn substituted Ni–Zn mixed ferrite doped with Gd ions for magnetoresistive applications // Mater. Res. Bull. 2020. V. 126. P. 110833.
  6. Tovstolytkin A.I., Kulyk M.M., Kalita V.M., Ryabchenko S.M., Zamorskyi V.O., Fedorchuk O.P., Solopan S.O., Belous A.G. Nickel-zinc spinel nanoferrites: Magnetic characterization and prospects of the use in self-controlled magnetic hyperthermia // J. Magn. Magn. Mater. 2019. V. 473. P. 422–427.
  7. Astafyev A., Lysenko E., Surzhikov A., Nikolaev E., Vlasov V. Thermomagnetometric analysis of nickel–zinc ferrites// J. Therm. Anal. Calorim. 2020. V. 142. P. 1775–1781.
  8. Hu J., Ma Y., Kan X. Investigations of Co substitution on the structural and magnetic properties of Ni–Zn spinel ferrite // J. Magn. Magn. Mater. 2020. V. 513. P. 167200.
  9. Bajorek A., Berger C., Dulski M. Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles // J. Phys. Chem Solids. 2019. V. 129. P. 1–21.
  10. Atiq Sh., Majeed M., Aqsa A., Abbas K. Synthesis and investigation of structural, morphological, magnetic,dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles // Ceram. Int. 2017. V. 43. P. 2486–2494.
  11. Anupama M.K., Srinatha N., Matteppanavar Sh., Basavaraj A. Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites // Ceram. Int. 2018. V. 44. P. 4946–4954.
  12. Belekar R.M., Wani M.A., Athawale S.A., Kakde S. Minimum hysteresis loss and amplified magnetic properties of superparamagnetic Ni–Zn nano spinel ferrite // Physics Open. 2022. V. 10. P. 100099.
  13. Suli Ch., Shuzhou Ch., Guanghui Zh., Jizhou Ch. Fabrication and properties of novel superparamagnetic, well – Dispersed waterborne Polyurethane/Ni–Zn ferrite nanocomposites // Compos Sci Technol. 2015. V. 119. P. 108–114.
  14. Kumar S., Singh J., Kaur H. Microstructural and magnetic properties of Zn substituted nickel ferrite synthesized by facile solution combustion method // Micro Nano Lett. 2019. V. 14. P. 727–731.
  15. Kumar S., Kumar P., Singh V., Mandal U.K., Kotnala R.K. Synthesis, characterization and magnetic properties of monodisperse Ni, Zn-ferrite nanocrystals // J. Magn. Magn. Mater. 2015. V. 379. P. 50–57.
  16. Liu G., Dai B., Ren Y. et al. Microstructure and magnetic properties of nickel-zinc ferrite ceramics fabricated by spark plasma sintering // Ceram. Int. 2022. V. 48. P. 10412–10419.
  17. Chang H., Gan D., Kao P.W. The effect of composition on the Curie temperature of κ-phase (Fe, Mn)3AlCx // Mater. Chem. Phys. 2006. V. 99. P. 30–33.
  18. Ala M., Vijayakanth V., Prabhakar V.S.V., Ki H.K. Structural, BET and EPR properties of mixed zinc-manganese spinel ferrites nanoparticles for energy storage applications // Ceram. Int. 2023. V. 49. P. 19717–19727.
  19. Rekha M.M., Veerabhadraswamy M., Maruthi N. Catalytic conversion of defatted rice bran into value added chemicals using copper ferrite: A sustainable approach // J. Indian Chem. Soc. 2023. V. 100. P. 101072.
  20. Rajinder K., Rohit J., Himanshi, Jahangeer A., Anant V.N., Saad M.A., Louis W.Y.L., Supriya A.P., Ridhima A., Sachin K.G., Bar-man P.B., Ragini R.S., Abhishek K. A new hybrid non-aqueous approach for the development of Co doped Ni-Zn ferrite nanoparticles for practical applications: Cation distribution, magnetic and antibacterial studies // Inorg. Chem. Commun. 2023. V. 157. Р. 111355.
  21. Lysenko E.N., Astafyev A.L., Vlasov V.A., Surzhikov A.P. Analysis of phase composition of LiZn and LiTi ferrites by XRD and thermomagnetometric analysis// J. Magn. Magn. Mater. 2018. V. 465. P. 457–461.
  22. Surzhikov A.P, Malyshev A.V., Lysenko E.N., Vlasov V.A. Structural, electromagnetic, and dielectric properties of lithium-zinc ferrite ceramics sintered by pulsed electron beam heating// Ceram. Int. 2017. V. 43. P. 9778–9782.
  23. Lysenko E.N., Nikolaev E.V., Surzhikov A.P, Nikolaeva S.A. Kinetic analysis of lithium–titanium ferrite formation from mechanically milled reagents // Mater. Chem. Phys. 2020. V. 239. P. 122055.
  24. Malyshev A.V., Lysenko E.N., Vlasov V.A., Nikolaeva S.A. Electromagnetic properties of Li0.4Fe2.4Zn0.2O4 ferrite sintered by continuous electron beam heating// Ceram. Int. 2016. V. 42. P. 16180–16183.
  25. Brzozowski R., Moneta M.E. Correlation between thermal induced structural and magnetic transformations in Si-rich Fe73Cu1Si16B7Nb3 metal alloy// Nucl Instrum Methods Phys. Res. B. 2012. V. 279. P. 208–211.
  26. Pavlović V.P., Krstić J., Šćepanović M.J., Dojcilovic J.R. Structural investigation of mechanically activated nanocrystalline BaTiO3 powders // Ceram. Int. 2011. V. 37. P. 2513–2518.
  27. Lemine O.M.: Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR // Superlattices Microstruct. 2009. V. 45. P. 576–582.
  28. Liu G., Dai B., Ren Y., Zhang K. Microstructure and magnetic properties of nickel-zinc ferrite ceramics fabricated by spark plasma sintering // Ceram. Int. 2022. V. 48. P. 10412–10419.
  29. Sherstyuk D.P., Starikov A.Y., Zhivulin V.E. Effect of Co content on magnetic features and SPIN states in Ni–Zn spinel ferrites // Ceram. Int. 2021. V. 47. P. 12163–12169.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental cell for TMM [7]

Download (140KB)
3. Fig. 2. Thermal anomaly parameters on TG/DTG curves obtained during TMM of magnetic samples: Tnach/Tcon - transition start/end temperature; ΔT - transition temperature range; Δm - transition weight step; TC - Curie temperature

Download (96KB)
4. Fig. 3. X-ray diffraction pattern of synthesised NCF (▼ - position of reflexes of Ni0.73Zn0.29Fe1.98O4 phase)

Download (46KB)
5. Fig. 4. Results of BET analysis: Sud - specific surface area, m2/g

Download (111KB)
6. Fig. 5. Particle size distributions of NCF powders based on volume (Q3)

Download (533KB)
7. Fig. 6. Hysteresis loops of NCF samples with different specific surface area

Download (168KB)
8. Fig. 7. Dependence of saturation magnetisation on NCF grinding modes

Download (113KB)
9. Fig. 8. Dependence of coercive force on NCF grinding modes

Download (105KB)
10. Fig. 9. Thermograms of samples in the Curie temperature region

Download (170KB)
11. Fig. 10. Dependence of the parameter Δm of the thermal anomaly at the Curie point on the specific surface area Sud of NCF powder

Download (89KB)